Unit 3: Derivative Shortcuts

Name:	

You have already learned how to use the limit definition to find derivatives. Now you will be introduced to several _______rules that allow you to find the derivative without direct use of the limit definition.

#1. Derivative of a Constant

If f(x) = k, where k is a constant, then for any x, f'(x) = 0.

Example:

f(x) = 9f'(x)=

#2. Derivative of a Power (Power Rule)

If $f(x) = x^n$ where n is a rational number, then $f'(x) = nx^{n-1}$.

Examples:

f(x) = x³
f'(x) = ____
$$g'(x) = ____ h(x) = \sqrt{x}$$

h'(x) = ____

#3. If $f(x) = kx^n$, where k is a constant and n is rational, then $f'(x) = k \cdot nx^{n-1}$.

Examples: $f(x) = 8x^{2}$ $g(x) = \frac{1}{6x^{3}}$ $g'(x) = ___$

#4. Derivative of a Polynomial (Sum or Difference Rule)

If f and g are differentiable functions, then $(f \pm g)'(x) = f'(x) \pm g'(x)$.

Examples:

Find the derivative and calculate the slope of the tangent line at the indicated x-value.

 $f(x) = 5x^3 + 2x^2$ at (x = -1)

f '(x)=_____

 $g(x) = -8x^6 - 5x + 7$ at (x = 3)

h(x) =
$$\frac{3}{x^2} + \frac{7}{x} - 4$$
 at (x = -2)

 $k(x) = (x^2 + 3x - 5)(2x + 1)$ at (x = 1)

k'(x)=_____